Biomechanical Properties of Volar Hybrid and Locked Plate Fixation in Distal Radius Fractures

Derek F. Amanatullah, M.D., Ph.D.
Shima C. Sokol, M.D.
Shane Curtiss, A.S.
Robert M. Szabo, M.D., M.P.H.

Orthopaedic Research Laboratory
Department of Orthopaedic Surgery
University of California at Davis
Disclosure

All Materials Provided by: Medartis (Basel, Switzerland)
Distal Radius Volar Locking Plates

- Diverse Designs
- Superior Stiffness
- Improved Fixation in Comminuted & Osteoporotic Bone
- Can be used with both Locking & Non-locking Screws
Hybrid Construct

- Non-locking screws
 - Stability from friction by plate-bone compression

- Locking screws
 - Fixed angle device using the screw-plate interface
Question

Is a hybrid plate construct stronger than a standard all-locking plate construct in the treatment of distal radius fractures?
Materials & Methods

- 3 Groups: Normal, Osteoporotic, Overdrilled
- Each Group Drilled and Plated with All-Locking (n=14) or Hybrid (n=14)
- 10 mm Dorsal Opening Wedge Centered 20 mm Proximal to Lunate Fossa
Materials & Methods

- Mounted into Instron, 6° of freedom
- 10 N preload
- 3 cycles from 20 N to 100N at 1 N/s
- Failure at 1 mm/min
Locking and Hybrid Distal Radius Constructs Have a Similar Stiffness
Locking and Hybrid Distal Radius Constructs Have a Similar Load at Failure

![Graph showing load at failure for normal, osteoporotic, and overdrilled conditions for hybrid and locking constructs.](image-url)
Conclusions

Good fixation of extra-articular distal radius fractures does **NOT** require all-locking screw fixation
Conclusions

Hybrid constructs provide similar stiffness and stability compared to all-locked constructs in the three different bone models tested.