Biomechanical Properties of Volar Hybrid and Locked Plate Fixation in Distal Radius Fractures

Derek F. Amanatullah, M.D., Ph.D. Shima C. Sokol, M.D. Shane Curtiss, A.S. Robert M. Szabo, M.D., M.P.H.

Orthopaedic Research Laboratory Department of Orthopaedic Surgery University of California at Davis

Disclosure

All Materials Provided by: Medartis (Basel, Switzerland)

Distal Radius Volar Locking Plates

- Diverse Designs
- Superior Stiffness
- Improved Fixation in Comminuted & Osteoporotic Bone
- Can be used with both <u>Locking</u>
 & <u>Non-locking</u> Screws

Hybrid Construct

- Non-locking screws
 - Stability from friction by plate-bone compression

- Locking screws
 - Fixed angle device using the screw-plate interface

Question

Is a hybrid plate construct stronger than a standard all-locking plate construct in the treatment of distal radius fractures?

Materials & Methods

- 3 Groups: Normal, Osteoporotic, Overdrilled
- Each Group Drilled and Plated with All-Locking (n=14) or Hybrid (n=14)
- 10 mm Dorsal Opening Wedge Centered 20 mm Proximal to Lunate Fossa

Materials & Methods

- Mounted into Instron, 6° of freedom
- 10 N preload
- 3 cycles from 20 N to 100N at 1 N/s
- Failure at 1 mm/min

Locking and Hybrid Distal Radius Constructs Have a Similar Stiffness

Locking and Hybrid Distal Radius Constructs Have a Similar Load at Failure

Conclusions

Good fixation of extra-articular distal radius fractures does MOT require all-locking screw fixation

Conclusions

Hybrid constructs provide similar stiffness and stability compared to all-locked constructs in the three different bone models tested

