Nagging Injuries in the Athlete: Tibial, 5th Metatarsal and Navicular Stress Fractures

Kenneth J. Hunt, M.D.
2014 COA Annual Meeting
Monterey, CA
Disclosures

I have no potential conflicts of interest with regard to this presentation
Nagging Injuries in the Athlete

Stress Fractures in the foot, ankle and lower extremity are very common in elite athletes.
Nagging Injuries in the Athlete

Stress fracture:

A partial or complete bone fracture that results from **repeated application** of **stress** of a **lower magnitude** than the stress required for bone to fail in a single loading.

Many occur as an acute injury **after** build-up of stress.
Nagging Injuries in the Athlete

Who gets them?

• Annual incidence of stress fractures in athletes estimated 2% to 21%.

• Track and field
 – Distance runners
 – Sprinters

• Basketball

• Tennis

• Volleyball

• Soccer
Stress Fractures in the Athlete

The Burden

- Up to 20% of Sports Medicine Visits
- 80% are in Foot/Legs
- “High Risk” stress fx:
 - Tibia
 - Navicular
 - Proximal 5th Metatarsal (Jones)

High risk of displacement, non-union or refracture, requires surgical decision-making

Fredericson et al. 2006. Top Magn Reson Imaging
Risk Factors
Stress Fractures

• Intrinsic risk factors:
 – Muscle fatigue/poor conditioning
 – Weakness/strength imbalance
 – Menstrual/hormonal irregularities
 – Lower limb malalignment
 – Foot structure (cavovarus)
 – Height - Tall stature
 – Genetic predisposition

Unmodifiable
Risk Factors

Stress Fractures

Pes cavus = High arch foot

Varus

Pes planus = Flatfoot

Valgus
Risk Factors

Stress Fractures

• **Extrinsic risk factors**
 – Excessive volume or intensity of training
 – Change in training regimen
 – Change in training surface
 – Worn-out training shoes
 – Cigarette smoking
 – Inadequate nutrition –
 • calories, calcium, vitamin D
 – Medications-
 • chronic steroid use
Risk Factors
Stress Fractures

- Female Athlete Triad:
 - Disordered eating
 - Amenorrhoea/oligomenorrhoea
 - Osteopenia

- 50% increase in stress fracture risk

Barrack et al., 2014 AJSM
High Risk Stress Fractures

• Tibia
 – Posterior cortex
 – Anterior tibial cortex
 – Medial malleolus

• Navicular

• 5th Metatarsal (Jones fracture)
High Risk Stress Fractures

- **Tibia**
 - Posterior cortex
 - Anterior tibial cortex
 - Medial malleolus
- **Navicular**
- **5th Metatarsal (Jones fracture)**
Tibia Stress Fractures

- Most common stress fx in active population
 - Military recruits
 - Running and jumping athletes (very little data)
- Up to 75% of chronic leg pain in athletes
- Posteromedial cortex is most common location
Pathophysiology

• Disrupted bone homoeostasis and inadequate repair in the face of repetitive overload
Pathophysiology

- Disrupted bone homoeostasis and inadequate repair in the face of repetitive overload
- Wolff’s law
 - Remodeling of microdamage
Pathophysiology

- Disrupted bone homoeostasis and inadequate repair in the face of repetitive overload
- Wolff’s law
 - Remodeling of microdamage
- Repeated pull of the gastrocnemius/soleus complex contributes to failure the bone
 - Proximal third in young patients
 - Mid/distal 1/3 junction in runners
Clinical Features

• Pain with activity
 – Especially longer periods
• Mild discomfort → persistent pain
• Eventually unable to participate/train
• Pain persists after cessation of activity
 – Night pain
• Exam:
 – Tenderness at midshaft tibia (medial border)
 – Swelling, erythema, warmth
Radiographs

- Normal in early stages
- Lucency followed by Cortical thickening at 2-3 weeks
99Tc Bone Scan versus MRI

- Bone scan pos at 2-8 days
- MRI more sensitive and specific

<table>
<thead>
<tr>
<th></th>
<th>MRI</th>
<th>CT</th>
<th>Bone Scan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>88%</td>
<td>42%</td>
<td>74-90%</td>
</tr>
<tr>
<td>Specificity</td>
<td>95-100%</td>
<td>89-100%</td>
<td>33-47%</td>
</tr>
</tbody>
</table>
Treatment

Low Risk

- **Phase 1**
 - Rest from aggravating activities
 - Ice, NSAIDs, Diet
 - Usually No immobilization
 - Pool, elliptical, weights

- **Phase 2**
 - Graduated return when pain-free
 - Shoe wear and running surface
 - Functional orthotics, bracing
 - Shock absorption
 - Correct mechanical imbalance
Treatment

Low Risk

• Other modalities
 – Bisphosphonates
 • Stewart et al., 2005, CJSM
 – Bone stimulators
 • Effective in delayed unions
 • Theoretical in stress fx
 • No evidence in stress fractures
High Risk Stress Fractures

• Tibia
 – Posterior cortex
 – Anterior tibial cortex
 – Medial malleolus
• Navicular
• 5th Metatarsal (Jones fracture)
Tibial Stress Fractures
Anterior Cortex

- More common in jumpers
 - Rare in distance runners
- Poor vascularity and repetitive loads
- Dreaded black line on radiograph
 - Non-union
 - Bone scan may be normal
Tibial Stress Fractures
Anterior Cortex

- More common in jumpers
 - Rare in distance runners
- Poor vascularity and repetitive loads
- Dreaded black line on XR
 - Non-union
 - Bone scan may be normal
- MRI Scan
 - Confirm location/extent
 - Acuity
Tibial Stress Fractures
Anterior Cortex

• **Treatment**
 – Immobilize NWB 6-8 weeks
 – Pneumatic leg brace
 – Electric stim up to 10 hrs per day

• **Return to sport**
 – Radiographic healing
 – Resolution of symptoms

• **Surgery if no healing at 4-6 months**
 – Sooner in elite athletes?
Treatment

• Surgical treatments
 – Excision and bone grafting (Green 1985 AJSM)
 – Drilling of defect (Rettig AJSM 1988)
 – Reamed IM Nailing (Varner et al., 2005 AJSM)
 • 11 tibia stress fractures (failed non-op)
 • All fractures healed (mean 3 months)
 • Return to sport by 4 months
High Risk Stress Fractures

- Tibia
 - Posterior cortex
 - Anterior tibial cortex
 - Medial malleolus
- Navicular
- 5th Metatarsal (Jones fracture)
Medial Malleolar Stress Fractures

- Running/jumping athletes
 - Repeated dorsiflexion, pronation and rotation
 - Insidious onset of medial ankle pain
Medial Malleolar Stress Fractures

Clinical Features

• **History**
 – Pain over medial malleolus
 – Swelling, no loss of ROM

• **Radiographs**
 – May be negative up to 2 months
 – Bone scan or MRI
 – CT scan to confirm fracture
Medial Malleolar Stress Fractures

Treatment

- **Modified rest 3-8 weeks**
 - Transition to boot when pain-free
 - Gradual return to activity
 - Complete healing averages 6 months

- **Surgery**
 - Any displacement
 - Fracture line on x-ray in high level athlete
Medial Malleolar Stress Fractures

Treatment

- Plate and screws
- Graft for non-union
- 4-6 weeks NWB
- Return to sport - 4.2 months
- No level 1 or 2 studies
Medial Malleolar Stress Fractures

Treatment

- Associated impingement lesion common
 - Jowett et al (2008, FAI)
- Advanced imaging can usually detect
- Consider arthroscopy to remove
High Risk Stress Fractures

- Tibia
 - Posterior cortex
 - Anterior tibial cortex
 - Medial malleolus
- Navicular
- 5th Metatarsal (Jones fracture)
Navicular Stress Fracture
Evaluation

• Diagnosis
 – Running athletes
 – “Ankle pain”
 – Navicular Tenderness
 • The “N” spot
Navicular Stress Fracture
Radiographs

- X-rays often normal
Navicular Stress Fracture
Radiographic Imaging

- Imaging
 - Bone scan/MRI
 - Positive before fracture appears
Navicular Stress Fracture
Radiographic Imaging

- Imaging
 - Early CT scan if stress fracture is suspected
Navicular Stress Fracture
Radiographic Imaging

- **CT scan**
 - Determines whether complete or incomplete
 - Surgery planning
Navicular Stress Fracture

Blood Supply

- Central hypovascular region
 - Only in 20% of patients
 - 60% with normal vascularity

McKeon et al. 2012 FAI
Navicular Stress Fracture

Treatment

“Incomplete”

I: Dorsal cortex

II: Extends to N-C joint

“Complete”

III: Extends to plantar cortex
Navicular Stress Fracture

Treatment

“Incomplete” Stress Fx

• In the athlete these tend to progress → screw fixation
 – 1-2 screws
Navicular Stress Fracture
Treatment

“Incomplete” Stress Fx

• 20 yo basketball player
• Negative x-rays
Navicular Stress Fracture

Treatment

“Incomplete” Stress Fx

- 20 yo basketball player
Navicular Stress Fracture

Treatment

“Incomplete” Stress Fx

- 20 yo basketball player
Navicular Stress Fracture
Treatment

“Incomplete” Stress Fx

• 20 yo basketball player
• Post-op
 – 6 weeks NWB
 – Early ROM
 – Return to play 4-6 months
Navicular Stress Fracture

Treatment

“Incomplete” Stress Fx

• 20 yo basketball player
• Post-op CT
Navicular Stress Fracture
Treatment

“Complete” Stress Fx

- In Athletes – without delay
 - Open bone grafting and screw fixation
 - Often need to debride joints
Navicular Stress Fracture

Results

“Complete” Stress Fx

• In non-athletes
 • Fixation is preferred by most
 • Role for conservative management?
 • Torg et al., 2010 AJSM
 – Non-op best for both complete and incomplete
 Non-op: 96% success
 Surgery: 82% success
Nagging Injuries in the Athlete

- Posteromedial diaphysis \(\xrightarrow{\text{Low risk}}\)
- Anterior tibial cortex
- Medial malleolus
- Navicular
- 5th Metatarsal (Jones fracture)
What is a Jones Fracture?

Definition=

• A fracture of the 5th metatarsal at the metaphyseal-diaphyseal junction in the region the 4/5 intermetatarsal articulation
Vascular water-shed region
Jones Fracture

The Problem

Non-operative Treatment

- 72-76% heal by 5 months
- Many fail to heal or refracture

Surgical Treatment

• Indications
 – Athlete
 • Acute/stress fx
 – Nonunion
 – Refracture

In Sports Medicine- Our Threshold to operate is decreasing!
Jones Fracture
Treatment

Operative goals
• Expedite healing
• More rapid recovery
• Accelerated rehab
• Decrease refracture risk
Jones Fracture
Treatment

Operative technique

• Screw fixation
 – Percutaneous (no big incision)
Jones Fracture

Treatment

Operative technique

- Percutaneus approach
- (+/-) Bone graft or substitute
Insert Screw “High and Inside”

HIGH & INSIDE
Jones Fracture

Surgical treatment

• Option to inject bone graft or BMA + DBM
Jones Fracture

Treatment

Aggressive postoperative management

– Weight bearing at 2 weeks
– Begin running in modified shoewear at 6 weeks (if clinically nontender)
– Avg. return to play 8 weeks
Post-Operative Bracing
Clamshell Orthosis
Post-Operative Bracing
Clamshell Orthosis
Post-Operative Bracing
Custom Orthoses
Gait Analysis
Gait Analysis
Jones Fractures

Pitfalls

• Beware of Cavus Foot
Jones Fractures

Pitfalls

• Beware of Cavus Foot
• Beware of Medial Cortex Penetration
 – Use multiple fluoro views
Jones Fractures

Pitfalls

• Beware of Cavus Foot
• Beware of Medial Cortex Penetration
• Beware of poor start point
Jones Fracture

Treatment

- Treatment of Refractures and non-unions
- Revision Fixation
- Larger diameter screw
- ICBG, or BMA + DBM
Jones Fracture
Treatment

Treatment of Jones Fracture Nonunions and Refractures in the Elite Athlete
Outcomes of Intramedullary Screw Fixation With Bone Grafting

- 21 Elite Athletes
- Mean Age: 27 yrs
- Union: 100%
- Ave Return 12 weeks
 - (8 weeks for primary)

Jones Fracture

Treatment

Meta analysis - mostly Level 4 data

• Return to sport ranged from 4 to 18 weeks
• Non-operative treatment: union rate 76 %
• Surgical treatment: union rate 96 %
• Non-unions:
 – Treated non-operatively had a union rate of 44%
 – Treated surgically had union rate of 97 %

Roche and Calder, KSSTA (2013) 21:1307–1315
Summary
Nagging injuries in the Athlete

• Stress Fractures are very common
• Be aware of risk factors – good history
• Pay attention to alignment – correct as needed
• Get the imaging you need
• Remember that sometimes surgery is the more conservative treatment
Thank You